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1. Introduction

The static Capital Asset Pricing Model (CAPM) developed by Sharpe (1964)
and Lintner (1965) and generalized by Black (1972) is the first important capi-
tal asset pricing model. In spite of many shortcomings and a lack of empirical
supportis still widely cited in the asset-pricing field and very often compared
to other models. Moreover the CAPM and its theoretical justification account
for a root of many models, which were proved to work pretty well in practical
applications. This paper contributes to this trend in the empirical asset
pricing literature.

According to the CAPM the risk of an asset is measured by the co-move-
ments of the asset’s return and the return on wealth portfolio—the portfolio
of all the assets in the economy. Poll (1977) points that this portfolio is not ob-
served making the CAPM model not testable. In practical applications one
uses a proxy of the return on the market portfolio. But which proxy is “the
best”?

Moreover in the real world investors make their decisions conditional on
all the information available to them. Hansen and Richard (1987) note that
these information might not be observable making tests of conditional pric-
ing models impossible. The best what can be done is to use a subset of the
unobservable information set of financial market participants. But which
variables should belong to this subset?

In this paper I respond to the Roll’s critique and Hansen and Richard’s
critique. I extend the return on wealth portfolio to include return on human
capital and housing. These two assets were shown to be important compo-
nents of the aggregate wealth in the economy. Moreover I propose to include
all the information that we can observe as conditioning information in
a conditional asset-pricing model. It still will be only the subset of real infor-
mation set of the agents but the best we can create. I use the dynamic factor
methodology according to which the information in a large number of eco-
nomic variables can be summarized by only a few estimated common factors.
I extract common factors and use some of them as conditioning variables.
I estimate the asset pricing models using both the Fama MacBeth and the
GMM estimation techniques. I evaluate their goodness of pricing cross-sec-
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tional average excess stock returns using formal x2 tests and informal
parameters like R2 (and R? adjusted), root mean square error and the Hansen
Jagannathan distance. My results suggest that both better proxy for a total
wealth portfolio and better representation of unobservable conditional
information set of investors significantly improves the performance of the
simple CAPM model. Moreover the conditional models proposed in this
paper are also shown to be competitive to popular Fama French three factor
model, which was proved to have an extraordinary empirical performance.

The idea of including human capital and real estate in the market portfo-
lio is not new, however, using dynamic factor analysis to generate conditional
information set in asset pricing context has not been deeply studied yet. Al-
ready Jagannathan and Wang (1966) observed that human capital, although
not directly measurable, is an important part of the total wealth in the econ-
omy. In the proxy for the return on the market portfolio they include the re-
turn on human capital, which they measure by the growth rate in per capita
labour income. In this paper I follow them and use the same proxy for the re-
turn on human capital. Heaton and Lucas (2000) consider the variant of the
model proposed by Jagannathan and Wang (1966) in which the human capital
is determined by two components: the value of future wage income and the
value of future proprietary income. They construct the returns to these two
components of human capital using the growth rates in aggregate wage
income and aggregate nonfarm proprietary income.

Kullmann (2003) points that also real estate constitutes a significant por-
tion of the aggregate wealth. She extends the proxy for the wealth portfolio
and incorporates commercial and residential real estate. I do not differenti-
ate between these two types of real estate and include only residential
wealth. As a proxy for the return on residential properties she uses the
change in the median price of existing homes as reported by NAR! I use dif-
ferent proxy: the change in OFHEO House Price Index. Additionally my em-
pirical study is conducted for quarterly frequency while Kullmann uses
monthly data. To my knowledge Kullmann (2003) is the only paper that looks
at the importance of housing capital in the simple CAPM framework. The re-
sults received in this paper complement those obtained by Kullmann.

I introduce the dynamics into the CAPM model by explicitly modelling the
coefficients in the stochastic discount factor as dependent on the current pe-
riod information. This technique has already been applied by Lettau and
Ludvigson (2001) who used consumption wealth ratio as a conditioning
variable.

Applications of estimated common factors are quite common in the macro-
economic literature but scarce in empirical finance literature. Ludvigson
and Ng (2007b) use dynamic factor approach to model empirical conditional
risk-return relation of excess stock market returns. In another paper (Lud-
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vigson and Ng (2007a)) they use the same methodology to analyze bond risk
premium. Bai (2007) derives from the common factors new state variables and
shows that innovations in these state variables account for the cross-section
of expected returns. To my knowledge these are the main applications of dy-
namic factors in the asset pricing literature. My paper contributes then to
this field with the new use of common factors.

The paper proceeds as follows. Section 2 discusses the theoretical justifi-
cation of the models. I present the asset-pricing model and expand it to in-
clude human capital and housing wealth. Moreover I describe how I intro-
duce conditional information. Section 3 describes the data used in empirical
study and their sources. I show how I construct the measures of the return on
human capital and residential properties and I describe a large set of macro-
economic and financial variables from which I extract conditioning vari-
ables. In Section 4 I extract common factors by principal component metho-
dology. I choose which estimated factors I use as conditional variables and
describe them. Section 5 explains the estimation techniques used in practi-
cal applications. I discuss the Fama MacBeth and GMM approaches and pres-
ent the evaluation criteria. Section 6 discusses obtained results and com-
ments on them. Section 7 concludes.

2. Theoretical Model

In this section I present the theoretical model for which I conduct the em-
pirical analysis. I deseribe the theory that explains the pricing mechanism
and justify why the model gives some interesting results.

2.1. CAPM and its enrichment

The static Capital Asset Pricing Model (CAPM) developed by Sharpe (1964)
and Lintner (1965) and generalized by Black (1972) is the first important capi-
tal asset pricing model. It has very sound theoretical basis relying on the
mean-variance efficiency concept. The model states that the expected return
on any risky asset i is proportional to the asset’s systematic risk. This risk is
measured by beta3”, defined as a covariance of the asset’s return with the re-
turn on the market portfolio normalized by the variance of the market
portfolio:

E<Ri,t+1) = E(RO,t ) + X, 8%

COU(RZ-, 10 Rm,t+1>

Var(Rm’ - )

The same expressed in the language of Euler equation is given by E(m; , {R;, ¢ + 1)
=1,wherem;,,=a+ bRy, ;,;andisastochastic discount factor (SDF here-
after). It is important to underline here that this specification is uncondi-

where 87" =

and E(R, ) is the return on zero-beta portfolio.
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tional. Cochrane (2005) points that when the parameters a and b in the SDF
are constant then conditional pricing Ey(m; , 1R; ; + 1) = 1 is equivalent to un-
conditional pricing E(m; , 1R; ; + 1) = 1. It makes then no difference to look at
conditional or unconditional pricing equation.

According to the theory the market portfolio is defined as a portfolio of all
risky assets that exist in the market and it represents total wealth in the econ-
omy. The return on market portfolio is unknown and in empirical applications
plausible proxies are used. The classical ones are the returns on broad-based
stock market indices, which include all or most of the assets traded on stock ex-
change. Roll (1977) criticizes such approach and states that any proxy is poor
and cannot provide an accurate representation of the entire market. True
wealth portfolio would necessarily include every available asset like commodi-
ties, real estate, precious metals etc. It is impossible therefore to create the mar-
ket portfolio and calculate the return on it. In spite of this the research world
still uses proxies and tries to construct them in the best possible way.

Mayers (1972) points out that the human capital accounts for the substan-
tial part of the total wealth in the economy. Jagannathan and Wang (1966) are
the first to extend the proxy for the market return to include also a measure
of the return on human capital. This improves the explanation power of the
classical CAPM model. The R2 increases from 0.014 to 0.305 when the return
on human capital is included in the market return.2

Heaton and Lucas (2000) use the Survey of Consumer Finances to examine
the cross-sectional variation in the composition of the household’s wealth.
Their analysis shows that the real estate is an extremely large component of
individuals’ financial wealth as well as total wealth. Kullmann (2003) takes
this into account and includes the return on real estate into the market re-
turn. She also differentiates between residential and commercial real es-
tates and justifies this by the fact that these are two different asset classes
and they need to be treated separately. Adding the two types of real estate
into the market portfolio and including their returns in the market return in-
creases the R2 of the model to 0.48 from 0.14 for the classical CAPM. When
also the proxy for the return on human capital is included, then the R2 of such
a model rises to 0.49.3

The idea of looking closer at the wealth portfolio and specifying the partic-
ular and significant components of this wealth forms the basis of my model-
ling strategy.

Human capital is a non-marketable asset and identifying the return on it
may seem a challenging task. It is difficult to define human capital. Econo-
mists, while referring to it, usually have in mind properties like: productive

2 This is calculated for 100 size and pre-beta sorted portfolios, in the period July 1963-De-
cember 1990.

3 This is calculated for 100 size and pre-beta sorted portfolios, in the period January 1972—
-December 1999.
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skills acquired by employees, technical knowledge obtained through educa-
tion process and experience, capabilities of the individuals who use them to
improve their productivity and increase their income. The natural trend is
then that highly qualified households receive greater income. One can easily
notice the strong relation between human capital and labour. Many early eco-
nomic theories referred to human capital simply as labour, one of the three
factors of production. It seems then justified that the proxy for the return on
human capital should be related to the labour income. Jagannathan and
Wang (1966) point that the monthly per capita income in the U.S. from sala-
ries and wages was about 63% of the total income in the period January 1959-
-December 1992. This suggests that the human capital contributes sig-
nificantly to the total wealth.

Real estate is another important constituent of total wealth. Heaton and
Lucas (2000) report that owner-occupied real estate constitutes 33,3% of total
national wealth and accounts for the largest fraction of it. Since 1995 the
homeownership rate in U.S. increased by around 8% making the housing
even more important asset. Residential real estate differs substantially from
other assets. It combines the flow of housing services (the homeowner gets to
live in the house instead of renting it—it is the consumption good) and an in-
vestment good (return on the housing equity—it is the saving vehicle). More-
over housing wealth is less liquid than any other financial wealth and ex-
poses the homeowner to the idiosyncratic household-specific risk. The Cen-
sus Bureau of U.S. reports that around 70% of households own their resi-
dences. All this suggests that the housing represents a significant portion of
total wealth.

The first basic asset-pricing model that I test is a model in which the
wealth portfolio is extended to include the human capital wealth and the res-
idential housing wealth as these are important components of the total
wealth. Differently from Kullmann’s approach I do not distinguish between
the residential and commercial real estate and I include only broadly-de-
fined residential housing.# I assume that the market portfolio is a linear
function of its main components:

Rm,t+1 = KpO + @Uvaw,t+1 + (‘pthhc,Hl + gPhsl{hs,tﬂ

4 As a return on commercial real estates Kullmann (2003) uses the return on NAREIT
EREIT index, which represents the total return on a portfolio of all Equity REITs traded on
stock exchange. Equity REITs are publicly traded companies that own and often operate inco-
me-producing real estate. However EREITs account only for around 3% of commercial real es-
tate according to Case Glaeser and Parker (2000) and might not be an accurate measure of the
return on commercial properties. Additionally the empirical results of Kullmann (2003) show
that in most cases the estimated risk factors related to commercial properties are not signifi-
cant.
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Such a specification leads to the following unconditional pricing equa-
tion:

E(Ri,t+l> - E(R07t>+ Now B3+ >\hc6}iw + thﬁ?s

This specification can be viewed as a three-factor model where each fac-
tor represents the return on different part of total wealth portfolio. As a re-
sult 8"¢ represents the risk related to human capital wealth and 3"s represents
the risk related to housing wealth. The pricing kernel equivalent to this
expected beta representation is the following:

m,, =a+b, R

+b,.R +b,.R

vw,t+1 he,t+1 hs,t+1

One of the shortcomings of the CAPM and its proposed extension is the
fact that this is a one period model and does not include any dynamics. When
applied period by period it produces risk premium, which are constant over
time. It fails to take into account the time-varying investment opportunities
and does not account for the intertemporal hedging component of asset de-
mand. All this is great limitation of the model. Many empirical studies® show
that stock excess returns can be forecasted, suggesting that risk premium
vary over time. Lettau and Ludvigson (2001) show that they are high in bad
times when risk or risk aversion is high and low in good times when the risk or
risk aversion is low. This reflects the fact that agents, when making invest-
ment decisions, take into account all the information which allow them to
make good decisions. In the next subsection I explain the way of introducing
dynamiecs into this model.

2.2. Conditional Factor Model
Cochrane (2005) proposes

a very simple and beautiful solution to the problem raised by conditioning information.

This solution is to explicitly model the coefficients in the SDF as dependent
on the current period information in a linear way:

a; = Qg + a2

bt = b() + bzzt
!/
The SDF My, =0, + bt,ft+1 » Where ft+1 = Lva,t+1 ’ Rhc,t+1 ’ Rhs,t+1 ’] , has then
ication is able to produce time-

time varying coefficients and such a speci

5 E.g. Shiller (1984), Campbell and Shiller (1988), Fama and French (1988), Fama and
French (1989), Campbell (1991), Fama and Schwert (1977), Hodrick (1992), Lamont (1998)], Fer-
son and Harvey (1999).
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-varying risk premium. Now it is the conditional pricing equation that mat-
ters since agents make investment decisions conditional on information
available to them at this time. The variable z; reflects this information. Such
approach allows to obtain model with time-varying risk premium in which
factors price assets conditionally but which has little theoretical structure.
For given pricing kernel the conditional beta representation is given by:

Et(Ri,t+1):R0,t + 28, @D

fori=1,...,N, where

B :Va/rt(ft+l’ t/+1)7lcovt(Ri,t+17 ft+1)
N :_Ro,tva,rt(ft+17 / )bz

t+1

2

It is obvious now that risk prices »; and measures of riskiness 3;; are now
time-dependent and the expected returns are conditional on available
information. The linear conditional factor model can be expressed as
a scaled multifactor model with constant coefficients:

mt+1 = (aO + azzt)+ (bO,vw + bz, VW Zt )R
+(b0,hs + bz, hszt )Rhs,t+1

+(bg e #5002 )Ry +

vw,t+1

3

m,,, =a,+a,2, +b, R 5 o0 (2R 10 )+ Do e R n +

vw,t+1
+bz, he (ZtRhc,tﬂ ) + bO, thhs,t+1 + bz, hs (ztRhs,tﬂ )

_ IF
mt+1 =0y +C t+1

vw,t+1

where
ft+1 :[zt va,t ? va,t ? R et % Rhc,t

!
bz,vw bO,hc bz,hc bO,hs bz,hs] .

For the new pricing factors TM account: the instrument z, the original fac-
tors f; . ;1 and the original factors scaled with the conditional variable z;: zf; ; 1.
The advantage of such representation is that now the SDF has constant coef-
ficients and this multifactor scaled model can be tested using unconditional
moments since, as noted in the previous section, in this case the conditional
pricing is equivalent to unconditional pricing. The unconditional multifactor
beta representation for this SDF is the following:

!
Zt Rhs,t 21 Rhs,t] and

h

c=la, b

0, vw

E(Rz’,tJrl):E(RU,t)_FX/Ei ©))

fori=1,...,N, where
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5, =var(7, T/)JCOU(R“, %)
X = —E(R[)’ ) )Var(ft, ft’)c

It is important to underline here that for the scaled model the lambdas X
do not have the casual interpretation as the risk prices. This is because the
scaled model is derived from a conditional one, which has a conditional beta
representation with time-varying risks (; and their prices X; given by
equation (2). There is no simple relation between time-varying risk prices I;
and coefficients \. I apply methodology that allows me to estimate a scaled
unconditional model of the form (4). It is possible to uncover the estimate of b,
but still without making any additional assumptions it is not possible to un-
cover time-varying risk prices \; for the factors f; , ;. Facing this difficulty
I concentrate on unconditional moments and evaluate the model on the basis
of its unconditional pricing abilities.

2.3. Conditioning variable

An important decision is the choice of the conditioning variable z;. Agents
make their investment decision conditional on all the information available
for them in the moment of decision-making. The role of the conditioning vari-
able is then to sum up and express all this information. It should give some
suggestions on how the asset prices and returns are going to behave in the fu-
ture. The instrument z; should be a good predictor of assets’ returns and so far
only these possibilities have been explored in empirical research. However,
such approach creates some potential inconveniences. First of all a large
body of the literature demonstrates that there are more than one variables
that predict stock returns. Valuation ratios (like dividend price ratio or earn-
ings price ratio), interest rates, time or default spreads, cay ratio (consump-
tion wealth ratio) were proved to possess good forecasting abilities. A simple
question is then which variable to choose. Choosing one of them means that
the information included in the others will not be used. Moreover there may
appear some problems of temporal instability in the forecasting relations.
There are periods in which the forecasting abilities of some predictors may
be weakened or may disappear at all. A classical example is the behaviour of
dividend price ratios in the mid-90-ties when they were heavily going down
but it was not reflected in lower stock returns as expected. Additional cri-
tique was presented by Hansen and Richard (1987) who pointed that condi-
tioning information of agents are not observable and, by analogy to Roll’s cri-
tique, the conditional assets-pricing model is not testable. In empirical appli-
cations what is used, is always a proxy and as a consequence this proxied
information set is always a subset of the agents’ information set.

6 E.g. Ferson and Harvey (1999), Santos and Veronesi (2006), Lettau and Ludvigson (2001).
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I propose to make this proxy as good as possible by including information
coming from a large set of macroeconomic and financial variables instead of
just one variable. This information is reflected in dynamic factors. The re-
search on dynamic factor models prove that the information in a large num-
ber of economic time series can be summarized by only a few estimated fac-
tors. This gives a possibility to explore a much richer set of instruments,
which is more likely to span the unobservable information set of financial
market participants. It is then more probable to reduce the effect of the omit-
ted-information estimation bias. Moreover summarizing information from
a large set of variables allows to eliminate the arbitrariness in the choice of
the conditioning variable and may provide a robustness against the problem
of temporal instability. Improved representation of the agents’ information
set is then my response to the Hansen and Richard’s critique.

2.4. Tested models
For the sake of completeness and in order to facilitate the assessment of

the models I examine the performance of the following models.
¢ CAPM model:

E(Rj,tﬂ ) =1 + wifBZWf
m, , =1+0,,(R", ~R] )

t+1 t+1
¢ vw-he-hs model:

B(RS (1) =1+ X BT+ 0B 4 0B

i,t+1

m,,, =1+b,, R +b, R +b, R"

t+1 t+1 t+1

¢ conditional vw-he-hs models:

E<Re ) =" + >\7Bi + >\vw XBTU + >\sz Bivw + thB}iLc + thcﬁihc +

i,t4+1
+>\hSB}iLS + >\zhsBzz'hS
m,,, =1+2,+b,R" +b,, (ZtRm”)—s-bth’” +bth<2tthc >+

t+1 t+1 t+1 t+1
hs hs
+btht+1 + bzhs (Zth+1 )

I evaluate as well the performance of the Fama French three-factor model
(FF) that has been empirically successful for comparison:

E(Re ) =" + wifB?Wf + >\smbB?nb + thlB?Ml

i,t+1

My, +14b,, (R, =R ) +0,, R +0,, R

t+1 t+1 smb™ V41 t+1
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3. Data

In this study I use data sampled at a quarterly frequency and the sample
period is 1975Q2-2006Q4. This gives me 127 time series observations.

Ithas become standard in the empirical asset pricing literature to see how
well the model prices the 25 Fama French portfolios”. This is understandable
because of the importance of size and value anomalies and I follow this
stream in the literature. However Lewellen et al. (2007) point that these port-
folios have a strong factor structure, which means that the group of some fac-
tors can explain nearly all of the time-series variation in portfolio returns.
This makes it likely that the betas on at least any two proposed factors will
line up with the portfolios’ expected returns. In order to break this structure
they propose to include portfolios that do not correlate so strongly with SMB
and HML factors and evaluate the model in terms of how well it prices all the
25 Fama French portfolios and added portfolios at the same time. Following
this advice I use as test assets the following: 3 size portfolios, 3 book-to-mar-
ket value portfolios and 10 industry portfolios (total of 16 portfolios). All the
data on the returns of the portfolios are taken from the Kenneth French’s web
page.8 I use the excess returns of the test portfolios over the three-month
T-Bill rate taken from the CRSP? from the WRDS10 database.

As a measure of the return on market portfolio I use the return on
avalue-weighted index, which includes all the assets traded in NYSE, AMEX
and NASDAQ. The data on the index are taken from the CRSP from the WRDS
database.

To proxy the return on human capital I follow Jagannathan and Wang
(1996) and I define the return on human capital as a growth rate in per capita
labour income L;:

he _ Lt + Lt—l _
t
Lt—l + Lt—2

The data on labour income come from the NIPA Tables published by U.S.
Bureau of Economic Analysis (BEA). The main concern is how the labour in-
come is defined. Jagannathan and Wang (1996) treat the labour income as
a difference between total personal income and personal dividend income.
Moreover they divide this difference by the total U.S. population so they get
per capita labour income. Apart from that they use monthly observations and
apply a one-lag timing convention justifying this that it is consistent with the
fact the monthly labour income data are typically published with a one-
-month delay. However with quarterly data this is not the case. I do not follow

)

7 (abbr.: FF25 portfolios) These are value-weighted returns for the intersection of 5 size and
5 book-to-market B/M equity portfolios traded on NYSE, AMEX and NASDAQ.

8 http:/mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

9 Centre for Research in Security Prices.

10 Wharton Research Data Services.
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then Jagannathan and Wang’s timing convention and instead assume that at
the end of the period the income is already known.

To proxy the return on housing I use the net change in the OFHEO11 House
Price Index (HPI):

Rfs = Pl -1 (6)
HPI, |

The OFHEO HPI for U.S. is a broad measure of the movement of sin-
gle-family house prices in the U.S. It serves as an indicator of house price
trends in U.S. and reflects the cost of structure and land, simultaneously con-
trolling for the quality of the house. The HPI is a weighted, repeat-sales in-
dex—it measures average price changes in repeat sales or refinancing on the
same physical properties. The calculation methodology uses the repeat valu-
ation framework, which is widely considered as the most accurate way to
measure valuation changes in housing markets over time. When a specific
property is for example resold the new sale price is matched to the property’s
first sale price. These two price points for a specific property are called
a “sale pair”. The difference in the sale pair is measured and recorded. The
HPI is based then on repeat transactions, which helps to control for the dif-
ferences in the quality of the houses comprising the sample used for statisti-
cal estimation. For this reason the HPI is described as a “constant quality”
house price index. The index is calculated using mortgage transaction data
provided by Fannie Mae and Freddie Mac. The HPI is calculated quarterly
and published with around 2-month lag. It is available since 1975-Q1.

I estimate common factors from a large panel of 126 macroeconomic and
financial time series.!2 The data are obtained from the Global Insights Basic
Economics Database and the Conference Board’s Indicators Database. They
were chosen to represent wide categories of economic and financial time se-
ries: real output and income, employment and hours, real retail, manufactur-
ing and sales data, international trade, consumer spending, housing starts,
inventories and inventory sales ratios, orders and unfilled orders, compensa-
tion and labour costs, capacity utilization measures, price indexes, interest
rates and interest rate spreads, stock market indicators and foreign exchange
measures. The raw data are transformed in order to assure stationarity and
before extraction of the factors they are also standardized. The complete list
of all the series used in this study as well as the details of the transformations
are given in the Appendix.

1 Office for Federal Housing Enterprise Oversight.
12 This is a subset of the 132 variables used by Stock and Watson (2002a), Stock and Watson
(2002b), Stock and Watson (2004), Ludvigson. and Ng (2007a).
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4. Extraction of the common factors

I use the methodology of dynamic factor analysis for large datasets in or-
der to obtain few factors that can effectively represent information included
in a large panel of variables. In this approach it is assumed that each variable
1 in a large dataset of N variables has the factor structure of the form:

Y
Ly 7>‘tft t+eé,

where f; is a r X 1 vector of r x 1 latent common factors and \; is a corres-
ponding r x 1 vector of latent factor loadings and e;; is an idiosyncratic error
term. It is important to underline here that the number of latent common
factors is substantially lower than the number of variables in a dataset that is
r << N so that there exist few factors (r) that can express the information
contained in many variables (IN). Moreover the cross-sectional dimension N is
large, and might be larger than the time-series dimension T, thatis N, T >> 0.
In this paper N = 126 and T = 127. As the common factors are not observable
I use the methodology of principal components analysis to estimate these
factors and replace f; by ﬁ, which is a vector of estimated first r principal
components. Estimated in such a way common factors are orthogonal. Jushan
and Ng (2002) propose the following criteria that allow consistently estimate
the number of factors 7:

r=arg min PCP(k) with PCP(k)=S(k)+ko’g(N,T)

0< k< kmax

r=arg_min IC(k) with IC(k)=In(S(k)+ kg(N,T))

0< k< kmax

N T ~ ~

NIT;;(QC“ —\ ff )% is the average sum of squared residuals
when k factors are estimated 52> = S(kmax), with kmax prespecified and
g(N, T) is a penalty function.!3 According to these criteria the first 8 principal
components can consistently span the same space as the real factors f;. Fig-
ure 1 shows that these 8 estimated common factors explain around 60% of the
variance of the dataset composed of 126 macro and financial variables.

The next step is to choose only these common factors that have predictive
power for excess stock returns. Additional advantage when checking for pre-
dictive abilities of the estimated factors is the fact that they are not persis-
tent. Table 1 below shows that the autocorrelation coefficients are not high,

where S( k) =

13 Jushan and Ng (2002) present the conditions that the penalty function needs to satisfy and
N+ Tl NT ]

n|—— | For more ex-
NT N+T

give some examples of penalty functions. One of them is g(N, T) =

amples please look into Jushan and Ng (2002).
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the highest one is 0.62 for the first estimated factor. For comparison, valua-
tion ratios like dividend price of earnings price ratios exhibit the persistency
of magnitude 0.90. The problem with strong autocorrelation is that it can
cause a finite-sample bias in the coefficients of predictive regressions e-
stimated by OLS. However, when potential forecasters are weakly auto-
correlated the OLS estimates are trustworthy. It is possible then to run fore-
casting regressions by OLS and evaluate the predictive power of the candi-
date forecasters by looking at the their individual significance, R% and R? ad-
justed and some information criterial4.

5 o Evpdaareied Wirianog
i
]
1]
‘-: 40
|
§x
Ll
i
10
1]
L 3 a 4 -] [ P 1
Fachnas

The cumulative percentage of the variance in the large panel of macro and financial data
explained by the factors

The first order correlation coefficients for common factors

Factors AR1(f/)
fi1 0.62

f2 0.44

fa -0.15
fa 0.06

fs 0.52

fe -0.27

14 Tt is however not possible to judge the sign of the coefficients as this can be done for
purely defined predictors because the potential candidates are now the factors that are influ-
enced by all the variables in the large dataset.
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Factors AR1(71)
i 0.28
fs 0.41

In the large literature on the predictive power for excess stock returns it is
pretty common to take simple historical average excess return as a bench-
mark and then investigate the consequence of adding a candidate predictor.
I follow this practice and run regressions of the form:

Tre+1 ="Yo + i fi,t+ € )

where 7 = 1, ..., 8 so each estimated common factor is taken as a regression
one at a time and 7/, are quarterly returns on S&P500 Index in excess of
three-month T-bill rate. I assess the predictive power of each common factor
in terms of its significance, R% and R2 adjusted. As the factors are orthogonal,
the same estimates of coefficients can be obtained by regressing excess re-
turn on all the factors at one time.!® However then it is not possible to asses
each factor in terms of what fraction of variance in excess returns it explains.
The results of the individual regressions are presented in the Table 2.

Results of the individual predictive regressions given by (7) estimated by OLS

i t-stat p-value R2 R2adj
f1 -0.29 -3.03 0.001 0.047 0.042
fe -0.29 -1.81 0.036 0.017 0.012
fa -0.19 -1.04 0.149 0.006 0.000
fa 0.16 0.83 0.205 0.004 -0.002
fs 0.24 1.04 0.149 0.006 0.000
fe 0.22 0.79 0.214 0.003 -0.002
f7 -0.16 -0.54 0.293 0.002 -0.004
fs -0.13 -0.44 0.329 0.001 -0.004

We can observe that only the first two common factors fl and fl are sta-
tistically important. Moreover R2 and R2 adjusted for these factors are signifi-
cantly higher than for others. I also check if the information summarized by
these two factors is not duplicated by other variables, which in the predictive
literature already have the status of good forecasters. In order to do this I run
the following predictive regressions:

15 In case of multiple regression, not reported here, estimated coefficients are approxi-
mately the same as those reported in the Table 2.
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where x; € {divided price ratio (dp), earnings price ratio (ep), default spread (ds),
term spread (ts), cay}. I compare this model with the benchmark, which is its
restricted version with x; as the only regressor. The results of these re-
gressions are presented in the Table 3.

The results of predictive regressions with additional predictors as regressors

const g i dp ep ds ts coy R? Rodj

(1) | 3.89%** | —0.29%** | —0.29%* 0.065 0.059
(2) | 16.17*** 3.65%** 0.039 0.035
(3) | 15.37%** | —0.26%** 3.25%%* 0.078 0.073
(4) | 19.08*** —0.41%%* | 4.51%** 0.074 0.069
(5) | 18.32%** | —0.25%** | —0.40%** | 4.09%** 0.111 0.106
(6) | 13.62%** 3.49%** 0.035 0.029
(7) | 12.43%** | —0.26%** 3.06%* 0.074 0.069
(8) | 18.21%** —0.51*** 5.13*** 0.082 0.077
(9) | 16.88*** | —0.25%** | 4.66%** 4.66%** 0.117 0.112
(10) 0.83 3.11%** 0.031 0.025
(11) | 2.12* —0.23%* 1.81 0.056 0.051
(12) 1.08 -0.24* 2.86** 0.043 0.038
(13) | 2.44%* | -0.24%** | —0.26%* 1.47 0.070 0.065
(14) | 3.73%** 0.09%** 0.047 0.042
(15) | 3.78*** | —0.21%* 0.07** 0.067 0.062
(16) | 3.75%** -0.13 0.09%** 0.050 0.049
(17) | 3.81%** | —0.23*** | —0.19 0.05* 0.074 0.069
(18) | 3.85%** 1.37%** 0.065 0.059
(19) | 3.85%** | —0.23%** 1.18%** 0.093 0.088
(20) | 3.85%** —0.25%* 1.33%** 0.078 0.073
(21) | 3.85%** | —0.23%** [ —0.26%* 1.14%** | 0.107 0.102
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We can observe that in almost all the specifications the estimated common
factors are statistically important. Moreover the R2 and R2adj statistics signif-
icantly increase when one of the factors or both are included as additional
regressors. This proves that indeed they do not duplicate the information al-
ready included in each of the prespecified regressor x;. Relying on the pre-
sented ana1y51s I choose the first and the second estimated common factors
fn and th as those that will serve as instrument z; in conditional linear asset
pricing model specified in equation (3).

It would be desirable to give an economic interpretation to the predictive
factors. However, this might not be easy since there can be many estimates of
factors as they are only identifiable up to an r X x matrix. It is then inaccurate
to look at the values of estimated factors. Moreover principal component
methodology produces factors, which are orthogonal, so they carry different
information and do not overlap. The most important however, is that, by con-
struction, common factors are influenced in different degrees by all the vari-
ables, which constitute the large panel of the data. This means that they do
not explicitly reflect only one macro or financial variable. Nevertheless
I briefly describe the two common factors in terms of how they relate to the
variables included in the large dataset. Following Ludvigson and Ng (2007a),
I investigate this relation by looking at the fraction of variance in each vari-
able of the large dataset explained by each of the two estimated factors fn
and fm individually. In other words I regress each of the 126 variables ont fn
and th, one at a time, and report R2 statistics. For each factor then I depict
marginal R2, which are the calculated R2 statistics, in the form of bar charts.
The 126 macro and financial variables are grouped by economic categories
and labeled using numbered ordering given in the Appendix.
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Figure 2 shows the marginal R? for the first common factor. We can ob-
serve that this factor is heavily related to macroeconomic variables, which
measure industrial production, employment, housing and new manufactur-
ing orders, but there is little correlation with financial variables and prices.
On the other hand from the Figure 3 we can conclude that the second com-
mon factor loads mainly on financial variables like interest rates and interest
rate spreads as well as on prices. But there is little correlation with macro-
economic variables. It is interesting to confront these conclusions with the
results of predictive regressions. When both the second common factor f,,
and spread rate (either default spread or time spread) are included in one re-
gression, we can see that either f,, or spread rate become insignificant and
R2does not increase so much as in case of other prespecified predictors. The
reason of this is probably the fact tha f,, reflects mainly information in-
cluded in interest rates and interest rate spreads among which there are de-
fault and time spreads. It should not be the surprising that f,, and rate
spreads duplicate some information.
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5. Estimation Methodology

I estimate the different asset pricing model specifications using two pro-
cedures: the Fama-MacBeth procedure proposed by Fama and MacBeth
(1973) and the GMM procedure.

5.1. Fama MacBeth procedure
The Fama-MacBeth (FM hereafter) procedure is a very simple and intu-
itive approach widely used in many empirical applications of asset pricing
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models in spite of some shortcomings. Lettau and Ludvigson (2001) point that
it can be especially useful in cases when there is a moderate number of time
series observations (T) but still one wants to check how the model prices a rel-
atively large number of assets (IN). The procedure has two stages; in the first
stage the time series regressions are run and the betas are estimated:

R =a,+B8.f, +¢, 8)

fori=1,..,Nandt=1, ..., T.

The first stage of FM produces the beta estimates § = cov(R,, fwar(f,f t’)fl.
Given betas in stage two one runs the cross-sectional regressions of portfolio
returns on the betas at each time period in the sample:

Rf:'\(t+6>\t+at &)

Cochrane (2005) points that one can run this regression with or without
a constant as the theory says that the constant or zero-beta excess return
should be zero. Moreover, according to econometric theory, including the
constant does not influence the consistency of the estimated parameters
lambdas ;. In the empirical literature on the asset pricing models the
cross-sectional regression is usually run with constant and then authors
either comment on the constant estimate or leave it without any explanation.
In this paper I include the constant in the estimation. I provide a detailed
discussion and the influence of including the constant along with the results.

For the simplicity of notation let X =[1 3]and 0, =[v, X\1-

The second stage FM procedure results in a Eime series of coefficient esti-
mates {é};:1 and pricing errors {a = R —~,— GX}EZI. The final estimates are
the time series averages of the estimated cross-sectional coefficients and
pricing errors!é:

Intuitively and as Fama and MacBeth suggest, one can use the standard
deviations of the cross-sectional time series estimates to generate the sam-
pling errors for final estimates:

cov(h) = %ET[(ét— 0)(6:—0)'1

Ccon(Q) = %ET[(&t—&)(&t—&)']

1 T
P EO= 30,
t=1
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It is important to emphasize here the error-in-variable problem that the
FM approach suffers from. The betas used in the cross-sectional regressions
as explanatory variables are in fact not fixed—they are estimates of the true
unknown betas and, although consistent, they are estimated with some error.
Shanken (1992) shows that this cannot be disregarded as it matters even
asymptotically and proposes corrected (Shanken correction hereafter) as-
ymptotic standard errors. The correction factor due to Shanken is:

Sh=1+%3/'%

where ¥ = E.[(f, —E.(f,)(f, —E;(f))] is the sample variance-covariance
matrix of the factors. The corrected errors of the estimated lambdas X\ and
pricing errors « are the following:

covg, () = %[(X’X)’l X'SX(X'X) '« Sh+ 5,1

oV, (Q) = %(IN —X(X'X) 7 Iy - X(X'X) X ) g

where ¥ is a matrix with a leading column and row of zeros and 3, in the

. ~ [0 0 A . .
lower right corner, > = 0 . and Xy is the sample variance-covariance ma-

!

/
trix of the residuals, ¥ = E(¢,c’), wheree, = [alt €y - em] )

Jagannathan and Wang (1998) show that the FM procedure does not neces-
sarily overstate the precision of the standard errors in the presence of condi-
tional heteroskedasticity so I do not totally reject Fama-MacBeth (uncor-
rected) standard errors but I report both of them.

To evaluate the goodness of the models estimated with FM procedure
I use both formal and informal criteria. The formal criterion is testing the
null hypothesis weather all the pricing errors & are jointly zero (the Wald
test). Estimates of the pricing errors and their variance-covariance matrix al-
low me to calculate the statistics &’ cov(@) ! &, which asymptotically follows
the Xﬁ,ﬁL distribution, where N is the number of tested portfolios and L is the
number of factors. However I use this test with caution because the null of
zero pricing errors may not be rejected, not because of small pricing errors
but because of their high sampling error. What is more, for this reason, I use
the test only to test one particular model and not to compare different mod-
els. Lettau and Ludvigson (2001) cite several investigations (Burnside and
Eichenbaum (1996), Hansen, Heaten and Yaron (1996)) that find that the tests,
which rely on the estimate of the variance-covariance matrix of pricing er-
rors, have poor small-sample properties. This can be especially unfavour-
able when the number of tested portfolios is high relative to the time se-
ries sample size. So complementary to this formal criterion, I also use two
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additional however informal criteria: the root mean square pricing error

RMSE = %&’& and the R2 and adjusted R2 of the cross-sectional regression.

The RMSE simply reflects how “big” is the average pricing error but, con-

versely to the test statistics &’ cov(d) ' &, does not take into account its vari-
ance-covariance matrix. It is then a natural complement to the formal chi
square test and it can be very useful while comparing the different asset pric-
ing models. As for the R2 (simple and adjusted) these are informative sum-
mary statistics, which reflect how well the model fits the data.

Rzzl_(ﬁf—XQKﬁf—XQ

(R{ —R")(R; —-R")

) N-1
adjR? =1-(1-R*»)——~
) ( )Nfol

where R; = E.(R%), R* = E,(R?).

Lewellen et al. (2007) warn not to rely on the R2 eriterion very deeply and
show that high R% may provide a weak support for the model. Burnside (2007)
points that R2 may be not bounded between 0 and 1 unless a constant is in-
cluded in the second stage of the FM procedure (which is the case in this pa-
per) and the predicted returns include the constant. However, the probability
limit of the R2 statistic is 1, no matter if a constant is included or not. In spite
ofthese shortcomings the R2is still a basis of the assessment of different mod-
els and it is widely used in empirical literature.

5.2. GMM procedure
The basic asset pricing equation for excess returns is:

E(m,R;)=0 (10

!
where R’ :‘[RfL R, ... Rf\n] . m, is a stochastic discount factor (SDF) which
is linear in factors and given by!7:

m, =m, (b)=1+ f/b

t

17 As noted by Cochrane (2005) when tested assets are excess returns then the pricing equa-
tion (10) does not identify the mean of the SDF as E(mtRf = E(km,R/) =0 for any constant k.
One has to then normalize one of the unknown parameters (usually a) in m, = a + fb. The nor-
malization does not affect the test statistics based on pricing errors so I follow Cochrane’s sug-
gestion and seta = 1.
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One can treat the asset pricing equation as the theoretical moment condi-
tions g(b) = E(u;) defining:
u, =u,(b)=m,R; an
It is straightforward then to map the concept of asset pricing equation into
standard GMM framework. GMM estimation is based on minimizing a qua-
dratic form of the sample moment conditions of the model. The moment condi-
tions are the pricing errors of the model and GMM naturally minimizes a linear
combination of sample pricing errors. The vector of unknown parameters b of
the SDF m; is determined by solving the GMM minimization criterion:

~

b= argrr{lg}ngT(b)/WgT(b)

where sample moment conditions are defined as g,(b) = ET(ut) = ET(’mLRf)
and W is some positive definite weighting matrix. The GMM theory gives also
the variance-covariance matrix of the estimated parameters:

var(b) = T(d wd) ' d'WSwd'(d'Wd) (12)

where d is the derlvatlve of the moment conditions with respect to the param-
eters:d = "gT )and S is the spectral density matrix given by S = Z E(u (9 )
where u; are glven in equation (11), estimated as S=E (U 1)]

The choice of the weighting matrix is still a matter of considerable debate in
the literature. This choice is crucial because the weighting matrix specifies how
important are particular moments or linear combination of moments in the
minimization. Among different weighting matrices there are three of a particu-
lar interest: the identity matrix W = I, the inverse of the variance-covariance
matrix of moment conditions W = S ! (efficient weighting matrix) and the in-
verse of the second-moment matrix of the returns W = E(R R/ ) (Hansen
Jagannathan or HJ weighting matrix). In empirical literature all the three vari-
ants are used, however they may work better or worse and one has to use them
with caution. It has to be stressed here that the choice of the weighting matrix
does not affect the consistency of the estimated parameters but it has an impact
on their efficiency. In many cases it turns out to be wise to trade some degree of
the efficiency for the robustness to model misspecifications.

“If you don’t know which weighting matrix to use, take the identity matrix”
says the informal advice. Often this suggestion is a very good choice.1® The
identity matrix gives to each of the moment conditions the same value and all
the moments are equally important in the minimization. This makes the GMM
estimation with the identity matrix useful while comparing different models

18 Tn the GMM literature it is common to refer to the first stage GMM when W = I.
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asin all model the same pricing errors are assigned the same weights. The first
stage estimates may give up some of their asymptotic efficiency but they are
still consistent and can be more robust to statistical and economical problems.
Moreover Altonji and Segal (1996) show that the first-stage GMM estimates
with the identity matrix are also much more robust to small-sample problems
than the GMM estimates in which the weighting matrix was estimated.

In the conventional two-stage GMM1!9 Hansen (1982) advocates using the
inverse of the estimated variance-covariance matrix of moment conditions as
a weighting matrix. He calls it an efficient weighting matrix because the ob-
tained estimates are asymptotically efficient. The choice of such weighting
matrix is based then on statistical considerations. Efficient GMM focuses on
the well-measured moments. The S-! matrix gives more importance to these
pricing errors, which have lower variance (low var(m, R’ ), as they are esti-
mated with higher precision. In practice it means that GMM will focus to
price best such linear combinations of the portfolios that have small return
variance. If among the portfolios there are a nearly-risk free portfolios then
GMM will concentrate on them and their moment condition will be assigned
significant weights. This property of efficient GMM makes it useless in model
comparisons. In different models the efficient matrices are different and as
a result they may value the pricing errors differently. In one model more im-
portance can be assigned to price the small-size portfolios while in another,
the value portfolios. Obviously one cannot compare the goodness of the mod-
els as they concentrate on different assets. One of the serious shortcomings of
using efficient weighting matrix is also its poor small-sample properties. The
estimate of S from the first stage is of low quality. This turns out to be even
more harmful when there is a small number of time series observations rela-
tive to the cross sectional sample size. Cochrane (2005) remarks that when the
number of moment conditions (cross sectional sample size) is more than
around 1/10 of the number of time series observations then the S estimates
tend to become unstable and nearly singular. This may drastically decrease
the quality of the second stage GMM estimates and influence the Wald test as
it may “improve” the 2 statistics not by lowering the pricing errors but by
“pblowing up” their variance-covariance matrix S-1.

Hansen and Jagannathan (1997) propose to use an alternative weighting
matrix: the inverse of the second moment matrix of the returns W = E(Rth’ ) L
They show that the square root of the minimum value of the GMM objective

19 GMM is very often done in a two stage manner. The identity matrix is used in the first
stage as a weighting matrix W = I to minimize the objective function g, (0)’Wg,(6). The choice of
W =TI isrecommended because it treats all the moment conditions equally. If one has some par-
ticular information on the importance of moment conditions one can reflect this in the struc-
ture of the weighting matrix. However often it is not the case and “the best” is to start with iden-
tity matrix. The first stage results in the estimator 0 (consistent but not efficient) which is the
used to estimate the spectral density matrix S = Tvar(gt{e)). The inverse of the spectral density
matrix S~! is then used as a weighting matrix (called efficient weighting matrix) in the second
stage GMM. It results in the estimator 0, which is consistent and efficient.
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function with the proposed weighting matrix has some interesting economic
interpretation. Suppose thatb = arg n{lbi}ngT(b)’E(RTR;)’1gT(b). Then

HId(b) = JgT(é)’E(RtR;)*lgT@) (13)

is the minimum distance between the stochastic discount factor estimated
from the model as m: = m,(b) =1+b' f, and the space of true discount factors
M. So when W = E(Rth’)’1 then the GMM objective function is the square of
the distance and the GMM estimates are found by making this distance as
small as possible. The HJ distance has also another interpretation: it is
a maximum absolute pricing error per unit norm or a maximum mispriced
Sharpe ratio for any test portfolio. Jagannathan and Wang (1996) derive the
asymptotic test for the HJ distance statistic to check the hypothesis that the
distance is zero. They show that the statistic T« HJd? is asymptotically distrib-
uted as a weighted sum of N — L identically and independently distributed
random variables each with x2(1) distribution, where N is the number of
tested portfolios (moment conditions) and L is the number of factors (para-
meters to estimate). This allows to obtain the p-values of the HJ statistic
through simulations.20 The HJ distance statistic and its p-value account for
additional criteria of the model assessment, next to RMSE. What’s more HJ
weighting matrix remains constant for different model specifications so the
distance measure can be directly comparable across models. However,
similar to the efficient GMM weighting matrix, the second moment matrix of
the returns may also suffer from poor small-sample properties. It is also even
more nearly singular than the spectral density matrix. However its influence
on the 2 statistics is not so obvious now because this has to be calculated
using the formula from equation (15).

Both the efficient and HJ weighting matrices have to be estimated before
one can use them in the GMM optimization. Cochrane (2005) points that when
an estimated weighting matrix is used then test portfolios are not in fact the
original portfolios but their linear combinations. The initial portfolios are
usually formed on some economically interesting characteristics such as
size, book to market value or industry. However, their linear combinations,
especially those that involve strong long and short positions, may lose some of
these properties. In the end the GMM estimation with estimated weighting
matrix will concentrate on pricing some potentially strange and artificial
portfolios combined from the original ones that may not be of any economic
interest. A remedy for this is to use the identity matrix as this does not influ-
ence the structure of the tested portfolios and leaves the characteristics
untouched. However the efficient and HJ weighting matrices are superior
to the identity matrix in another respect. The GMM estimates with

20 The detailed prescription for how to run simulations and get the p-values is described in
Jagannathan and Wang (1996) in Appendix C.
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W = E(Rth’)’1 orW = S! are invariant to the initial choice of portfolios. But
when the identity matrix is used to weight the moment conditions then this is
no longer true and the results depend on the initial portfolio selection. This
property addresses the critique raised by Kandel and Starmbaugh (1995) and
Roll and Ross (1994).

In the view of the above discussion I conduct the GMM estimation with the
identity matrix and the HJ matrix as weighting matrices. Using iden-
tity-weighting matrix gives robust estimates and does not distort the proper-
ties of the original portfolios. On the other hand using HJ weighting matrix al-
lows to assess the model with additional criterion in the form of HJ distance
and is insensitive to the choice of portfolios. Both facilitate the model
comparisons.

Once the GMM parameters b are estimated one can start to evaluate the
model. The main GMM based test is the x2 test of the over identifying re-
strictions. It allows to test if all the pricing errors (moment conditions) are
jointly significant. The GMM J statistic is the following:

Jst =gp[var(g,)] 9, ~ X3 1 (14)

where []* denotes the pseudo-inverse since the variance-covariance ma-
trix of the moment conditions is singular with rank N — L. This can be esti-
mated using the “longer”2! formula:

!

s~ 31 atawa) - awewa) | o

I use the J statistic only to evaluate a particular model but I do not com-
pare the statistics between the models. For comparisons, I use the root mean

square pricing error RMSE = /+ ¢ ,(b) '9+(b). Moreover when using HJ weight-
ing matrix I calculate for each model the HJd statistics and their p-values and
I also compare them across models.

Some comments have to be made here concerning the equivalence be-
tween the beta pricing models and the linear models for the discount factor.
In case of excess returns and normalized SDF this equivalence is the
following:

m, =1+ f/b & E(R®) = B\ (16)

B =cov(R; f)yvar(f fH™ an

21 The “longer” formula is valid for any positive definite weighting matrix. When the effi-
cient weighting matrix is used then this formula simplifies to var(g,) = 1(S — d(d’S"'d)'d’) and
the J statistic is Jst = Tg,S 'g,.
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N = _M (18)
E(m,)

It is invariant to the normalization of the SDF. Another subtle difference
is between the pricing errors coming from the FM regression and GMM esti-
mation. In FM procedure what is minimized is the square of the pricing er-
rors a and in GMM estimation—the weighted square of the pricing errors?2 g,.
The FM pricing errors and the GMM pricing errors are not the same. The
relation between them is:

dr :aE(mt) 19)

The FM and GMM procedure give exactly the same results only when the
identity matrix is used in the GMM estimation and the normalization is such
that E(mt) =1 Otherwise the two procedures may give different results. In
the empirical asset pricing literature it is common to use GMM and then re-
port also lambdas X\ and their standard errors calculated by delta method.
However one has to bear in mind that in GMM estimation it is the gy that is
minimized, not a. So while the model estimated by GMM may exhibit an
excellent fit in terms of GMM pricing errors o it may also give a very poor fit
in terms of FM pricing errors gr. And vice versa: model estimated by FM
regression may work well in terms of FM pricing errors o and it may be of
poor quality in terms of GMM pricing errors gr. This also motivates the use of
both FM and GMM estimation techniques.

6. Results and Comments

I present and evaluate the results of the estimations in two respects: if in-
cluding human capital and housing improves empirical performance of the
model and if introducing dynamics in the form of extracted common factor as
an instrument matters. Additionally I compare obtained outcomes with those
of Fama French three-factor model. Fama and French specify three factors
that affect assets’ excess returns: excess marker return R, — R{H, size pre-
mium R;") and growth premium R!"/. These factors proxy for unobserved
macroeconomic risks, however it is still not clear which risks. Nevertheless,
the model was proved to be very successful in practice and it is common in
empirical finance literature to take it as a benchmark.

22 1 call pricing errors both o and g when it is clear from the context which one is of the
interest. When it is not the case I use the name FM pricing errors and GMM pricing errors to
differentiate between them.
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6.1. Estimation Method: Fama MacBeth regressions

Tables 4 and 5 show the results of the Fama MacBeth regressions. We can
easily observe that just including human capital and real estate improves un-
conditional pricing of simple CAPM model. R2 and R2adj increase signifi-
cantly for both groups of test assets. A ugmented model explains 52% of varia-
tion in expected excess returns of 25 Fama French portfolios while simple
CAPM only 9%. For 16 mixed portfolios the improvement is even stronger:
augmented model explains 65% of variation in their expected excess returns
while simple CAPM only 0.2%. In Tables in the Appendix we can also notice
that for both groups of test assets the loadings \ygs on real estate component of
total wealth are positive and significant. This means that the housing part of
wealth is important in pricing assets and carries significant and positive risk
premium. The coefficient on human capital \gc is negative but not
significantly in opposite to the same coefficient on value-weighted portfolio,
which is negative but significantly. This effect is quite common in empirical
literature on asset pricing when 25 Fama French portfolios are used as test
assets. In both simple CAPM and Fama French three factor model the risk
premium on market portfolio are as well significantly negative.

Fama MacBeth regressions 25 FF portfolios: comparison

CAPM vw-hc-hs f1 f2 FF
RMSE 0.73 0.53 0.31 0.38 0.35
R? 0.09 0.52 0.83 0.75 0.79
RZ?adj 0.05 0.45 0.76 0.65 0.76
x2stat 75.82 58.87 47.23 43.64 62.27
p-value 0.000 0.000 0.000 0.000 0.000
Sh x3stat 74.54 28.33 10.82 12.43 50.57
p-value 0.000 0.131 0.860 0.770 0.000
Sh 1.02 2.08 4.36 3.51 1.23

It is interesting also to look at x2 statistic. For 25 Fama French portfolios
itsvalueis high 58.87, indicating that augmented model produces statistically
high pricing errors (significantly different from zero). However, when we
account for the fact that betas used in the second stage were estimated and
calculate corrected x2 statistic it is then lower enough to be insignificant
indicating insignificant pricing errors. Nevertheless I have to be cautious
here because there are two forces that lower 2 statistic: lower pricing errors
or their higher variances. For augmented model the pricing errors are
indeed lower that for simple CAPM but their corrected variance-covariance
matrix var(a)is blown up by the Shanken factor 2.08 making x?2 statistic even
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lower (and in consequence we do not reject that pricing errors are different
from zero). And the Shanken factor for simple CAPM is 1.02. Why looking only
at corrected 2 statistic can be misleading, we can see clearly by comparison
of the model augmented with human capital and housing with Fama French
three factor model. The FF model has lower RMSE that the augmented model
but according to corrected 2 statistic still produces significant pricing
errors. This is because its var(u) is not increased by the Shanken factor,
which for Fama French model is only 1.23. For augmented model the
Shanken correction significantly decreases the precision of estimated
variance-covariance matrix of pricing errors and in consequence the 2
statistic is low. On the other hand when 16 mixed portfolios are tested, the
augmented model is not rejected nor by uncorrected neither by corrected 2
test while simple CAPM is rejected at 5% (although not at 1%) by both tests.
Bai (2007) makes some interesting comments on the Shanken correction
factor. She points that the correction is large for models that include scaled
macroeconomic factors, which are more persistent than the mimicking
portfolio factors. This observation is also quite common in asset pricing
literature.

Fama MacBeth regressions for 16 mixed portfolios: comparison

CAPM vw-hc-hs f1 fa FF
RMSE 0.37 0.22 0.19 0.17 0.25
R? 0.002 0.65 0.71 0.77 0.56
R2adj -0.07 0.56 0.46 0.57 0.45
X2stat 24.23 12.90 12.73 12.81 16.80
p-value 0.043 0.38 0.12 0.12 0.16
Sh xstat 24.23 9.02 7.61 5.17 15.80
p-value 0.043 0.70 0.47 0.74 0.20
sh 1.00 1.43 1.67 2.48 1.06

Another conclusion that we can draw from Tables 4 and 5 is that including
common factors f, and f, as instruments in conditional pricing model also
improves the empirical performance of the model. R? statistics increase sig-
nificantly when instruments are included in the pricing equation. The condi-
tional model with f, as a conditioning variable explains 83% of variation in
expected excess returns of 25 Fama French portfolios while augmented
CAPM 52% and Fama French three factor model 79% (with f, as a condition-
ing variable this fraction is lower 75% but still higher than that of augmented
CAPM). For 16 mixed portfolios the improvement is not so strong: the model
with f, as a conditioning variable explains 71% of variation in their expected
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excess returns while augmented CAPM 65% and Fama French three factor
model 56% (with f, as a conditioning variable this fraction is slightly higher
77%). In terms of R2adj conditional models with f, and f, are better than aug-
mented CAPM (R2adj are 76% and 65% for conditional models and 45% for un-
conditional augmented CAPM) but not necessarily better that Fama French
model (for which R2adj is 76%) when 25 Fama French models are tested. For
16 mixed portfolios the conclusions are different: both conditional models
are better that Fama French three factor model (46% and 57% vs. 45%) but
only f, as a conditioning variable improves unconditional pricing (R%adj for
augmented CAPM is 56%).

For 25 Fama French portfolios uncorrected x2 test rejects both
conditional models as well as Fama French three factor model as producing
too large pricing errors but corrected %2 test approves conditional models
with factors f, and f, as instruments. Again the reasons are probably not
lower pricing errors (RMSE for conditional models are only slightly lower
than for other models) but high Shanken factors (4.36 for f, and 3.51 for f,),
which blow up the variance covariance matrix of pricing errors. For 16 mixed
portfolios nor corrected neither uncorrected x2 test rejects conditional
pricing models with f, and f, as carrying conditional information.

Additional comment should be also made on the constant in simple CAPM,
CAPM augmented with human capital and housing and Fama French three
factor model. For these three models the constant is positive, significant and
plays a crucial role in the model’s fit. As it was noted earlier the theory says
that the constant or zero-beta excess return should be zero. This phenome-
non is also not so rare in empirical applications and it has already been ob-
served many times. The constant indicates by how much the model misprices
the risk free rate. For example when the FF25 portfolios are tested the con-
stant in the Fama French 3 factor model is 4,91%, which means that the model
misprices the risk free rate by 4,91% quarterly and this is a lot. Burnside
(2007) suggests that a measurement error in the estimated betas and resulting
downward bias in the estimated lambdas as well as a liquidity premium in
T-bills can account for the explanation of a positive pricing error for the risk
free rate. Nevertheless it is not common in the literature to reject the model
because of significant constant. Nevertheless the asset pricing literature
does not concentrate on the explanation of the high significance of the
constant and this may be an interesting topic to cover in the future research.

In the Appendix I also visualize observed excess returns in comparison
with excess returns predicted by different models. Figures 4-8 depict real-
ized vs. predicted expected returns of 25 Fama French portfolios and Figure
9-13 do the same for 16 mixed portfolios. In general all the figures confirm
previous conclusions.
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6.2. Estimation Method: GMM, W =1 and W = (ERR)f1

Tables 6 and 7 show the results of the GMM estimation for two different
weighting matrices: the identity matrix Iy and the inverse of second moments
of excess returns matrix E(R°R°’). It should be pointed here that the general
conclusions remain unaffected by the type of weighting matrix used in the es-
timation.

When comparing simple CAPM model with this augmented with human
capital and housing we can observe that the augmented model always pro-
duces significantly lower RMSE and HJd. Moreover almost in all the cases
apart from one (when test portfolios are 25 Fama French portfolios and
E(R°R*’") is used as a weighting matrix) the x2 test indicates that the pricing
errors are not statistically different from zero and the augmented model
cannot be rejected. When W =E(R°R®’) is used, additional test of HJ
distance show that HJ distance is indeed statistically small (p-value of the HJ
statistics is 0.34 for 25 Fama French portfolios and 0.71 for 16 mixed port-
folios) and again proving that the augmented model cannot be rejected. All
these findings confirm the general conclusion that extending the return on
total wealth portfolio so that it includes human capital and housing as I do in
this paper indeed influences the empirical performance of the simple CAPM
model. In fact the augmented model is also pretty competitive to Fama
French three factor model. In almost all the cases it has lower RMSE and HJd
(only in case when test portfolios are 25 Fama French portfolios and
E(R°R°')isused as a weighting matrix the RMSE of Fama French three factor
model 0.38 and is lower that RMSE of augmented CAPM 0.50). Moreover for 25
Fama French portfolios the Fama French model is rejected by both x2 test
and HJ test as producing to high pricing errors and too high HJ distance.

GMM estimation for 25 Fama French portfolios: comparison

Model CAPM vw-hc-hs f1 f1 FF
w=1 RMSE 1.01 0.15 0.12 0.13 0.38
x?2stat 85.67 30.22 21.58 15.18 65.04
p-value 0.00 0.11 0.25 0.65 0.00
HJd 5.02 0.75 0.61 0.65 1.85
W = E(RR)" | RMSE 1.14 0.50 0.46 0.47 0.39
x?stat 88.94 41.96 30.35 26.84 64.87
p-value 0.00 0.006 0.03 0.08 0.00
HJd 0.66 0.20 0.19 0.20 0.55
HJstat 55.29 5.18 4.56 4.83 39.19
p-value 0.00 0.34 0.39 0.28 0.003
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An interesting observation is that when GMM estimation technique is
used, the superiority of the conditional models over unconditional is not so
clear as it is in case of Fama MacBeth regressions. The conditional models
with estimated common factors f, and f, as instruments always produce
lower RMSE and HJd with comparison to augmented CAPM model. But the
differences in the values of these measures are not high (for 16 mixed portfo-
lios as test assetsand W = E(R°R*’)the RMSE are actually the same 0.09). The
conditional models are never rejected in terms of x2 test and HJd: they are
proved to generate statistically small pricing errors and HJ distances for both
groups of test assets and both weighting matrices. For 25 Fama French
portfolios the conditional models are also superior to Fama French model in
terms of x2 test and HJd as the Fama French model is rejected by both tests as
producing to high pricing errors and HJ distance. For 16 mixed portfolios
none of these models is rejected by the two formal criteria but the conditional
models are characterized by lower RMSE and HJd than Fama French three
factor model.

GMM estimation for 16 mixed portfolios: comparison

Model CAPM vw-hc-hs f1 fe FF

W=1 RMSE 0.58 0.09 0.08 0.07 0.38
X?2stat 27.27 10.74 4.61 5.50 17.57

p-value 0.04 0.63 0.86 0.79 0.17

HJd 2.34 0.38 0.32 0.28 1.52

W=E(RR')" [RMSE 0.63 0.09 0.09 0.09 0.42
X?2stat 26.57 10.57 4.65 9.35 18.44

p-value 0.03 0.65 0.86 0.41 0.14

HJd 0.42 0.12 0.09 0.11 0.31

HJstat 22.76 1.72 1.04 1.64 12.51

p-value 0.06 0.71 0.76 0.44 0.27

6.3. Comments

Presented in this section results confirm two main hypotheses of this pa-
per: one that extending market portfolio by human capital and housing in-
deed matters in asset pricing model and the second that introducing dynam-
ics in the form of extracted common factor as an instrument also improves
empirical performance of asset pricing models. Both types of improvements
are proved to be of importance in practical applications. Moreover the pro-
posed conditional models can be viewed as competitive to the Fama French
three factor model as they were shown to work better.

141



7. Conclusions

There are two main difficulties in examining the empirical support for the
classical static CAPM model. One of them is the fact that the total wealth port-
folio is not observable and the second that the real world is dynamic and
not static. In practical applications it is quite often assumed that the return
on the total wealth portfolio can be well proxied by the return on broadly-
-defined stock market index. Moreover while dealing with the cross-section
of assets returns, it is also convenient to regard risk premium as time-in-
variant.

I this paper I try to deal with both weaknesses. I extend the proxy for the
return on market portfolio so that, next to the return on stock market index it
also includes the return on human capital and the return on housing as these
two types of wealth constitute the significant portion of the total wealth. I fol-
low Jagannathan and Wang (1996) and proxy the return on human capital by
the growth rate in per capita labour income. As a representative of the return
on housing I use the change in the OFHEO House Price Index, which, to the
best of my knowledge, has not been yet used in empirical literature on asset
pricing. Moreover by introducing dynamics into the asset pricing model
I make risk premium time-variant, which more reasonably reflects the real-
ity. An important novelty is the fact that I represent the conditioning informa-
tion by the common factors which I estimate using dynamic factor methodol-
ogy. In this way I explore a much richer set of instruments, which is more
likely to span the unobservable information set of financial market
participants.

Obtained results prove that real estate are important in empirical asset
pricing. They confirm as well that more accurate proxy for the return on total
wealth portfolio indeed matters. The CAPM augmented with human capital
and housing works significantly better than simple CAPM. Moreover when
dynamics is taken into account this augmented model gives even better re-
sults—it can explain around 80% of the variation in the cross-section of ex-
cess returns on 25 Fama French portfolios. For different test assets the con-
ditional model is also superior to the Fama French model. I show then that it
is important to use a good representative of the conditional information set of
the agents as it can significantly improve the empirical performance of the
asset pricing models.
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Appendix A. Tables

*—significant at 10% significance level
**__gignificant at 5% significance level
***__gignificant at 1% significance level

A.1. Fama MacBeth regressions; Test Assets: 25 Fama French portfolios

CAPM model, in %

CAPM const rm-rf
X-lambda 3.96 -1.07
t-stat 3.69%** -0.86
Sht-stat 3.66%** -0.86
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vw-he-hs model, in %

CAPM coast vw hc hs
X-lambda 5.12 -3.10 -0.07 0.89
t-stat 4.59%** -2.43*%* -0.29 2.59%**
Sht-stat 3.18%** -1.84%* -0.21 1.83%*
Conditional CAPM model with cond. variable cv = fl
CAPM coast fi1 vw fievw hc f1+he hs f1+hs
A-lambda | 3.21 0.27 -1.38 -2.94 -0.30 -0.69 -0.51 0.20
t-stat Py 0.80 -1.05 -1.15 -1.43** -1.02 -1.86** 0.30
Sht-stat 1.38* 0.39 -0.57 0.83 -0.72 -0.50 -0.93 0.15
Conditional CAPM model with cond. variable co = fz
CAPM const fa VW faxvw hc f2xhc hs f2xhs
X-lambda | 4.86 -0.31 | -2.91 5.81 -0.15 -1.17 0.61 -0.92
t-stat 4.64%** | -1.15 | -2.33** 2.18** -0.69 —-1.95%* 1.82%* | -2.10**
Sht-stat 2.47%** -0.64 | -1.43* 1.21 -0.39 -1.08 0.99 -1.17
Fama French three-factor model, in %
CAPM coast rm-rf smb hml
X-lambda 491 -2.84 0.74 1.40
t-stat 4.27%** -2.12%* 1.59* 2.54%**
Sht-stat SRS 5 -1.97** 1.58* 2855 B

A.2. Fama MacBeth regressions; Test Assets: 3 size portfolios,
3 book-to-market value portfolios and 10 industry portfolios

CAPM coast rm-rf
A-lambda 2.20 0.07
t-stat 2.64%** 0.07
Sht-stat 2.64*** 0.07
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rm-hc-hs model, in %

CAPM const VW hc hs
A-lambda 1.59 0.76 0.38 0.54
t-stat 1.86** 0.64 1.37* 2.23*%*
Sht-stat 1.55* 0.57 1.15 1.90%*
Conditional CAPM model with cond. variable cv = fl
CAPM coast f1 ww f1xvw hc f2xhc hs f2+hs
X-lambda | 2.15 -0.07 0.09 2.53 0.50 -0.30 0.48 0.02
t-stat 1.58* -0.18 0.06 0.46 1.48* -0.32 1.93** -0.01
Sht-stat 1.22 -0.14 0.05 0.36 1.16 -0.25 1.53% -0.01
Conditional CAPM model with cond. variable cv = fg
CAPM coast f2 vw farvw hc f2xhe hs f2xhs
A-lambda | 1.41 -0.36 0.82 1.36 0.32 -0.28 0.79 -0.42
t-stat 1.79* -0.66 0.74 0.47 1.10 -0.34 2.43%* -0.47
Sht-stat 1.14 -0.42 0.55 0.30 0.71 -0.22 1.58* -0.30
Fama French three-factor model, in %
CAPM coast rm-rf smb hml
X-lambda 3.18 -1.03 0.72 0.36
t-stat 2.52%* -0.70 1.45* 0.60
Sht-stat 2.44%* -0.69 1.44* 0.60

Appendix B. Figures

Each figure consists of two graphs, which show real vs. predicted expected
excess returns. The graphs on the left show 25 Fama French portfolios sorted
jointly on size and book-to-market. Assets are denoted as 7j fori,j =1, ..., 5,
where i = 1 for the smallest companies and 7 = 5 for the biggest companies
andj = 1 for growth firms (low book-to-market values) and j = 5 for value firms
(high book-to-market values). The graphs on the right show 3 size portfolios
(s1, s2, s3), 3 book-to-market portfolios (b1, b2, b3) and 10 industry portfolios.
The abbreviations for the industry portfolios are the following: Nd—Non-
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durables, Dr—Durables, Mn—Manufacturings, En—Energy, HT—HighTech,
Tl—Telecomunication, Sh—Shops, Hl—Health, Ut—Utilities, Ot—Others.
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Figure 5.

Unconditional CAPM augmented with human capital and housing, 25 Fama French portfolios
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Figure 6.
Conditional CAPM with human capital and housing, instrumentz, = f,,, 25 Fama French port-
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Figure 7.

Conditional CAPM with human capital and housing, instrumentz, = f 2¢» 29 Fama French port-
folios
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Fama French three factor model, 25 Fama French portfolios.
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Figure 9.

Simple CAPM, 16 mixed portfolios
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Figure 10.

Unconditional CAPM with human capital and housing, 16 mixed portfolios
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Figure 11.

Conditional CAPM with human capital and housing, instrument z, = f 1¢» 16 mixed portfolios
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Conditional CAPM with human capital and housing, instrument z, = f »¢» 16 mixed portfolios
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Figure 13.

Fama French three factor model, 16 mixed portfolios
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Abstract Conditional Tests of Factor Augmented Asset Pricing Models with Human

Capital and Housing: Some New Results

In this paper I develop the asset pricing model in which the wealth portfolio is
enriched with human capital and housing capital. These two types of capital
account for a significant portion of the total wealth. Additionally I introduce
dynamics into the model and represent conditioning information by common
factors estimated with dynamic factor methodology. In this way I can use more
accurate representative of the unobservable information set of the investors.
Obtained results prove that indeed better proxy for market return matters.
Moreover conditional models show promising empirical performance and of-
ten price the cross-section of excess equity returns better than the Fama
French three factor model.
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