=C/»Dydaktyka w szkole wyzszej
Nauczanie ekonomii

Capital Assets Pricing Model

Wojciech Otto, Assistant Profesor,
Department of Economics, University of Warsaw

1. Portfolio Analysis—Portfolio of Shares with short sale allowed

Let:

Py +D; =P
' P,

be arate of return on investment in shares of i-th company for a period of time
of unit length, where:
A S and b, ,are prices of one share of i-th company, at the beginning and at

the end of the period, respectively (at time t = 0 and t = 1),
* D, is a value of dividends paid during the period (0, 1], accumulated to the

time moment ¢t = 1.

Let R denote the column vector of rates of return R;, 7 = 1, ..., n on invest-
ment in shares of (n) various companies.

We treat rates of return as random variables with joint probability distri-
bution, with (vector of) expected values:
p = E(R) containing elements p, = E(R),
and a positively defined (hence nonsingular) covariance matrix:
A=E{R—p)-(R—p)'} containing elements a; ; =COV(R,, R)).

Assume now that we invest in shares of the #-th company the amount x; at the
beginning of the period. By the portfolio we mean n-element (column) Vector
containing elements x;. Rate of return on investment in the portfolio x equals:

n n n
in~(1+Ri)—in > xR, OB

R = i=1 i=1 _ =1

v n n o2l
Z Z

where [ denotes n-element (colamn) vector of oneis and x’denotes the vector x
transposed. We will also assume that the amount invested equals one (dollar?):

x'l=1
thus the rate of return on portfolio x just equals:
R, =2x2'R

x
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Astherate of return is a linear combination of individual company rates of
return, we obtain easily:

E(R,)=1x'p
and:

VAR(R,)=1x'Ax

We will not assume, that all elements of the vector x are non-negative. Pos-
sibility to issue the liability on shares of a given company (to invest the nega-
tive amount in its shares) is called “short sale”, and in general many stock ex-
changes allow for such transactions. Allowing for short sale radically simpli-
fies the portfolio analysis—otherwise being a fairly complex (mathematically)
problem. The Capital Assets Pricing Model could be derived despite this sim-
plification, so for the purpose of this paper any unnecessary complications
are not required.

1.1. Minimum risk portfolio.
Problem 1. Find the portfolio x* having the minimal variance of the rate of re-
turn.
Solution:

Positively defined quadratic form (under the restriction x’l=1 has
aunique global minimum which could be found by equating to zero first-order
partial derivatives of the function:

L(x, \) = x'Ax+ X'l -1)
where X is a Lagrange multiplier.
As a result we obtain the system of (n + 1) equations of the form:
T+ N =
!sz =0
LL x'l=1
Multiplying both sides of first n equations by the scalar 0.5 and by the in-
verse of A we obtain:

r=1x.aY
2

Multiplying in turn both sides of first n equations by x” (from the left) we
obtain:
2r’'Ax+Xt'l=0
which directly leads to the result:

=—-2¢'Ax
Substituting x by the previous result we obtain:

7
A=-2. —%X-A*lﬂ Al-LIx.ay

o
) 2 )

—=N2.'A ]
2
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Which leads to the result:
2

VATl
(there is no risk of dividing by zero because of the assumption of A being positively
defined), which allows for the final result, i.e. the minimum-variance portfo-
lio:

A1

VAT
for which the expectation and variance can be easily calculated as:

U'A~1,
I'A-1]

P = Xip =
(A*lz)’AAfll 1
(l/Afll)z B I'A-1]

o? =VAR(R, )=

which finalises the solution of the problem 1.

Exercise 1:
Assume that the matrix A is of the form:

A=02<<1—p)~1+p-ll’)

where I denotes the unit matrix n X n. The assumption simply means that
variance of the rate of return for each individual company is o2, and linear
correlation coefficient for any pair of companies equals p.
Find the minimum variance portfolio x*, its expectation and variance.
Remark: for mathematical correctness of these assumptions one should
presume that

1 )
el-——,1
P [ n-1"")
From the economic point of view it is sensible to restrict our considerations to
the interval p € [0, 1).

Solution: direct application of well known rules of matrix inversion leads
to the following result:

) 1

= ~[<1+(n—l>-p)~1—p-ll']
)

o2 (1-p) -<1+(7L— 1)p
¢ hence all elements of the vector x. equal —,
n
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¢ expected rate of return is just the simple average of individual rates:

P = l ’ l/lL7
n
¢ and the minimal variance amounts to:

1 _2 (i n=1 )
a " e e )

In the formula for the variance the first term represents the diversifiable
part of risk, while along the increasing number of companies » this compo-
nent tends to vanish. The second component represents the non-diversifiable
part of risk, so roughly speaking it corresponds to the general situation of the
market, reflected in simultaneously parallel deviations of all individual rates.

[0

1.2. Minimum variance portfolio among portfolios with a given expectation

Let us also assume now that elements of the vector of expectations p are (at
least some of them) mutually different. Of course it means that the number of
companies n is at least 2. Then the system of equations:

(x'l=1

=1y
has for an arbitrary real number y a solution (when n > 2, then the number of
solutions is infinite). Thus under this additional assumption the following
problem is well posed.

Problem 2. Find portfolio x(y) having the minimum variance among all portfo-
lios with expected rate of return y, where y is a predetermined arbitrary real
number.

As a prelude of solution we will prove at first a lemma:

Lemma 1.
Under previously stated assumptions the following inequality holds:
VA /A 1y > (l’A’lu)z
Proof of the Lemma 1:
Since the matrix A is positively defined, then also its inverse Al is positively
defined. Hence the following statements are true:
a) 1"A7ll > 0 (which, as something obvious, has been already utilized in the solu-
tion of the problem 1);
moreover, as elements of the vector p are (at least some of them) different
numbers, they cannot be at the same time equal to zero, so:
b) /A"l >0
¢) thus there exists such a number a = 0, thatl’A 1l =a2 .p'A ",
d) and hence as well the inequality:
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(l — ap)/ A*1<l — ap) >0

as the other one:

(I+ap) A (1+ap)>0

are true (because neither the vector (I — ap ) nor the vector (I + ap ) is equal
to the vector of zeros).

As both quadratic forms quoted in the point d) are positive, we can con-

clude that:
VA +a? p/A > ‘20, ~l,A71|,L‘
which, taking into account the point ¢), leads to the conclusion:
VA~ > \a -Z’A*HL‘ and
a? p'A > ‘a -Z’A’lu‘
Thus the product of left-hand-sides of the two last inequalities is greater
than the product of their right-hand-sides:
a? p’ A VA > a? ~(l,A71},L>2
which finalises the proof of the Lemma (remind that a = 0).

Solution of the problem 2.
Now we should equate to zero first order partial derivatives of the func-

tion:
L2, N, Ng) = AL+ X (21— 1)+ Xy(2'n — v)

The resulting system of (n + 2) equations is of the form:

s

2Ax+ N1+ Xop=0
lx’l =1
h%=y
Similarly as in the problem 1, we now multiply both sides of first n equa-
tions by 0.5 and by the inverse of A (from the left):

1
M= AT (L g
Next multiplying
_ 1 1A—1 1A—1
1_—§(>\1l AT+ UA )
whereas multiplying both sides of the system (*) by p/ (from the left) we obtain:

y= —%(le AT+ N ’A*IM)
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The last two equations form a system with two unknowns, which could be
presented in the form:

ylUAlp—p'A ™y
VAT /A — (l’A’lp)z

VA -y 1'A 1
VA /A1y — (l’A’h)z

td
Il
S

>
o

Il

[\

where the denominator of right-hand-side expressions, by virtue of the
Lemma 1, differs from zero.

Replacing \; and X\, in the system of equations (*) by obtained expressions,
we finally obtain the solution:

/A71 —y-Z’A*I y'l/Afll_lfAfl
x(y) _ (M i u) 5 ~A71l+ ( M) 5 'Ail}L
VA7 /A=Y — (l ’Ap) VAU /A~ — (l 'Aflp)

which represents points belonging to the straight line (one-dimensional
hyperspace of the n-dimensional space). It is easy to perceive that each point
is a linear combination of the vector A™!l and the vector AYy, and that coeffi-
cients of this linear combination are linear functions of the variable y. Two
different points stretching this line could be easily obtained by substituting
the variable y by two different fixed numbers (for example zero and one). Of
course, by substitution y = x we obtain x(y) = x..

Variance of rate of return on portfolio x(y) is given by inserting the result in
the general formula:

[o(3)] -A-a(y)

which after tedious calculations leads to the result:

AT y2 —2l,A71LL . y+MlA71M

[a(y)] A ay)= ALY A v iA
VA .p'A 1u—(l’A lu)

which is a quadratic function of the real variable y.

1.3. Admissible portfolios, effective portfolios

Let us assume now that the analysis is performed on request of an investor
whose preferences could be reflected by two simple rules:
¢ out of two portfolios of equal expectations the one of smaller variance is
preferred,

¢ out of two portfolios of equal variances the one of greater expectation is
preferred.
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Admissible portfolio is any point (element) of the set:

{x. reR™, l’x:l}

Effective portfolio issuch anadmissible portfolio for which there is
no better (in the sense given by preferences described above) admissible port-
folio.

Let us introduce a two-dimensional function which attributes to each port-
folio its variance and expectation. More precisely, the function attributes to
each point of the set {x: x € R", I’x =1} the point on the plane with coordi-
nates (x'Ax, x'p). Such a function is often called mapping.

We know about this mapping that:
¢ for each real number y set of all portfolios x such that their expectation

equals y (so satisfying the condition x’p = 3) is mapped to the set of points of

the form oz(x), yP, where we know that the first coordinate attains its mini-
mum for the portfolio x2(y) (the formula has been obtained when solving the

Problem 2), and that this minimum amounts to:

VAU 2 -2 1A - y+p/A

!
[2(9)] -A-a(y)=
VAT /Al — (l’A’lp)z
so is a quadratic function of the real variable y.
¢ From the above it results that the image of the whole set of admissible port-

folios under its mapping into the plane (x’A~'x, xp)is the subset of the
plane cut out by parabola, which may be defined as follows:

r 7 1
. 2 :
!It(z, Yy (2 y)€R?, 2> [x( y)] A y)J! provided n > 2
¢ In the special case, when n = 2, then the image of mapping contains only
points lying on the parabola. When n = 3, then each point of the parabola
corresponds to exactly one portfolio, whereas each point lying to the right

of the parabola line corresponds to two different portfolios. When n > 3,

then still points lying on the parabola line correspond to uniquely defined

portfolios (given in the solution of the Problem 2), whereas the counter-im-
age of any point lying to the right of the parabola line is an infinite set of
points in the R" space.

Traditionally results of the analysis are presented on the graph, where ex-
pectations are on the vertical axis, whereas on the horizontal axis standard
deviations, instead of variances, are laid off. Then the image of mapping is
a set:

1
|

le 0y e ern o2 ) a )
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which has a shape of hyperbola (together with points to the right of the hyper-
bola line). More precisely, it means the right arm of the hyperbola (the whole
image is contained in the half-plane right to the vertical axis). Coordinates of
the apex of the right arm of the hyperbola are (0., p.), given by the solution of
the Problem 1. To find out asymptotes we need to notice that:

* they have to cross one another at the point (0, )

¢ theirslope coefficients are (in terms of absolute values) equal to the limit:

tim 2ot

Simple (although tedious) calculations lead to the conclusion that both as-
ymptotes could be expressed by one formula:

f

{(z, Yy (2 y)€R?, y=p. iz-\/p’A p—
|

7]

Of course only such portfolio which minimizes variance (given the expecta-
tion) may belong to the set of efficient portfolios. However, not all solutions of
the Problem 2 are efficient. Out of the set of all solutions we have to eliminate
those portfolios for which (given the variance) there are other portfolios with
higher expectations. On that plane, on which expectations and standard devi-
ations are laid off, the image of the set of all solutions of the Problem 2 lies on
the right-hand-side arm of the hyperbola which is symmetric in respect of the
horizontal line crossing the arm at the apex (0, j..). Thus the image of the set of
efficient portfolios contains only that part of the right arm of the hyperbola
which lies above the level of the apex (so called efficient frontier). The
set can be described as follows:

v oer a= @] 4 aw) v2p.
L

————

and its counter-image (in the portfolio space) is a set of such x € R", that:
A—1 1A-1 1A-1 1A-1

pA T —y U'A y VAl -T'Ap

( ), )

VA /A1y — (l’A’lp)2 VA p/A 1 — (l’A’ﬁL)z
where y € (., 00).

Of course this set has a form of the ray (included in the space R").

Figure 1. contains a graph of the right arm of the hyperbola line, pointing
out the efficient frontier, and asymptotes of the hyperbola. That part of the hy-
perbola line, which corresponds to portfolios with all elements of the vector x
being non-negative is also shown. It is easy to find that part of the hyperbola:

xr= A

!Ir(z, Yy (2 y)€R?, 2= [x(y)]l Aa(y), v(y)=20,i=12 .., n
{

———

191



Dydaktyka w szkole wyzszej. Nauczanie ekonomii

as all elements of the vector x are linear functions of the same variable y (it
could of course happen that for a given matrix A and vector p this set is an emp-
ty set). The graph contains also other elements, which are explained in the next
section. The graph represents the case when n = 3, expected rates of return are
p' = (0.20 0.15 0.10), variances of rates are (a,; Qyy 0y3) = (0.20 0.15 0.10), and for
each pair of rates the linear correlation coefficient equals 0.4.

Mingging of the set of porifellas o (¢} onthe plane of simsdan] devindons

, il & agpecindis
Lx
20% TV LD
(eF ..t
6% e . /’ﬂ a..
et — Iyparta e frght 2oy
- = - -asympRotes
12% $o ——— mon-ngative clemens of 1 |
LTS (T A
i bl st s chomc fims
8% .
-{fl.ﬁ'_.] >
405 R —p—
o)
Figure 1.

Image of the set of portfolios being solutions of the problem 2 on its mapping into the plane of
standard deviations and expected values of the rate of return.

Exercise 2.
Let us assume, as in the exercise 1, that A is of the form:

A=0?(1-p)-I+pll"), wherep €0, 1).

Let us recollect that under this assumption the apex of the hyperbola has
coordinates:

n n ) n
Asymptotes in turn could be expressed by formula:

_ ) !
\/Oz(l_p) [1+ Ll'p}a FLJL where p= l .

jl(za y): (2, y)GRza y=p:|:2~\/ '(M'M—”ﬂ'uz)}

o}(1-p)
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which could be re-expressed in the equivalent form:

r Al
| B 1 n _a|
Wz Yy (Y eR? y=putz 5> (h—1)"
L o¥(1-p) = |

It is recommended to the reader to inspect (on the basis of the above for-
mula), the influence of parameters ¢2, p, n and

1 2
%;(M—H)

on the shape of the hyperbola, given by the gradient of asymptotes.

2. Portfolio analysis—investing in shares and bonds when short
sale is allowed

Let us assume that the real alternative to investing in equities is the possi-
bility to invest in securities which are risk free (rate of return is R, with proba-
bility one).

For example, if our analysis focuses on one-week rate of return, the avail-
ability of treasury bills (or some other securities free of default risk) with
one-week time to maturity is required. Our decision problem can be formu-
lated now as the problem of choice of a pair:

(8, x) §eR, xeR", l'x=1

where &x; is the amount invested in i-th company, whereas (1-5) is the amount
invested in treasury bills.

Expected rate of return for such portfolio amounts to:

E(R,,)=5 2w+ (1-5) Ry

whereas the standard deviation to:

IVAR(R, ;) = -Na'Ax

Let us fix now the internal structure of sub-portfolio of shares x such that
x'p > R, (such x exists for arbitrary predetermined Ry, provided that elements
of the vector m are not all identical—what we have already assumed).

Then for § > 0 both the expectation and the variance of the rate of return on
portfolio (§, x) are increasing functions of §, and each such portfolio could pos-
sibly be an efficient one. Any portfolio with the coefficient § < 0 cannot be effi-
cient (has smaller expectation and greater variance than the portfolio with § = 0).

Therefore portfolios potentially efficient are represented on the plane by
points belonging to the ray:
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(O,Rf)+ 5. («/x’Ax, (x’M _ Rf)), where § > 0.

The position of the apex of the ray (0, Rf) is always the same. However, the
choice of the structure of the sub-portfolio of shares x influences the slope of
the ray. Obviously, the greater slope coefficient the better, as the slope coeffi-
cient represents how much expectation increase in exchange of unit increase
of the standard deviation. Such sub-portfolio structure x, for which the slope
will be the highest, is the solution to the following problem:

Problem 3.
Find x for which the function:
(x) x/H_Rf ttains it .
g(x) = ——— attains its maximum,
Nr'Ax

under the restriction 2’1l = 1.

Solution.
The Lagrangian takes now the form:

' —Ry
TN = ——+ N (211
M= T
Equating its first order partial derivatives to zero we obtain the system of
equations:

x2'l=1
Multiplying now both sides of the subsystem of first n equations (from the
left) by ' we obtain:

_Rf
Nx'Ax

which, introduced back to the first n equations gives the result:

(%) o'Av-(n—Rj 1)=(a'n—Ry) Av

Let us also assume now, that 'A™'(u - R;- ) = 0.
Multiplying now both sides of (**) from the left by /AL, and dividing them
by the expression 'A™(u - R;- 1), we obtain:
7
x'Ax = (x " _Rf)
VA (n =Ry 1)
which again introduced to the system of equations (**) leads to the result:
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(n Ry D)
VA7 (n =Ry 1)
which directly leads to the solution x,:
A’l(p -R;- l)
VA7 (n—Ry 1)
So far we have no guaranty that the obtained solution really maximizes the
slope coefficient (obtained point x, satisfies only the first-order conditions).

In order to have a closer look on the solution, we should find its image on the
plane of expectations and standard deviations. The expectation amounts to:

B LL’A*I(LL—RJ» ~l)

Ty =
0 l'Afl(p—Rf ~l)
which could be also re-expressed in the form:

Ax =

Lo =

= M’A’lu—Rf WA B
© AW R, 1A

WA VAT (WA 4 (A1) A

(l’Aill)z f lfAfll
A~ B
l/Afll i
M/A71H _ZfAfll _ (M/Afll)z
+p2— Ry ps
(ra 1y’

which finally could be expressed as the sum of two components:
2
p/A AT — (p 'Aill)

Toh = s + 5
By the virtue of the Lemma 1 (section 1.2) the numerator of the second com-
ponent is positive. Thus we could conclude that:

Toh > e & Ry < s

and:

Lo <pu & Ry >

Now we are ready to understand better the essence and
geometry of the problem, which we have just solved.
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IfRf < ps, then the point (0, Rf) lies below the point (0, p.), at which asymp-
totes of the parabola cross. So it is possible to find a ray with the apex at (0, Rf),
having a positive slope, and being tangent to this part of the hyperbola, which
we have pointed out (when solving Problem 2) as being the set representing ef-
ficient sub-portfolios of shares. In this case the obtained solution of the prob-
lem 3 is in line with our general task.

On the other hand, ifRf > p., then the point (0, Rf) lies above the point (0, ),
so the ray with apex at (0, Rf), and tangent to the right arm of the hyperbola
could be tangent only to the lower part of the right arm—but points lying on
the lower part correspond to inefficient portfolios.

Still, if Ry=p, then there are no rays with apex at (0, Ry, tangent to the hy-
perbola. This is because any ray with a slope greater or equal to the slope of
the asymptote will have no common points with the hyperbola—whereas any
ray with smaller slope will cross the hyperbola line, so it could be replaced by
a “better ray” having at least a little bit greater slope. More precisely, if the
slope is smaller than the slope of the asymptote, then there exists such posi-
tive number ¢, that the slope could be expressed as:

J (A’
S TT]
then the ray will obviously cross the hyperbola line. However, the same could
be said about the ray with the slope equal to:

1A-1 2
\/M'Alu SUEII [11, "
I'A 1 2)
where 7 is an arbitrary positive integer. It is clear that for increasing n cross-
ing points of subsequent rays with the hyperbola will move to the right and up-
wards, towards portfolios with arbitrary large expectations and standard de-
viations.

In the case when R; = . it is also impossible to point out the ray being tan-
gent to the lower part of the right arm of the hyperbola (arguments are analo-
gous).

Summarizing the solution of the Problem 3, effective sub-portfolio of
shares could be pointed out only in the case when Ry < puu Then it is given by
the formula:

A’l(p -Ry ~l)

VA ' (w—R; 1)

and its image on the plane of expectations and standard deviations of rates of
return is the point:

.’)CO:

(Jx{JAxO ,x()p)
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This image could be compared with the image of the minimum-variance
portfolio, after re-expression to the form:

pA AT — (u ’A’ll)z
(VA7) (n. ~Ry)

2
pA AT — (p ’A’ll)
VAT =0, |1+

(VA 1)’ (ne —Ry)

Top =ps +

3. Capital Assets Pricing Model (CAPM) and the structure of

rates of return on investment in shares
Let us now assume that all investors present on the market:

* are driven by preferences described at the beginning of the section 1.3,

¢ analyse data on the basis of the same time interval (for example all are in-
terested in rates of return on various assets over one month),

¢ have at disposal the same set of information about the market (matrix
A and vector p corresponding to the same basic time interval),

¢ undertake investment decisions according to results of the analysis, by
zero transaction costs;

and that the market is in equilibrium.
Then each investor will choose the effective portfolio, which is repre-

sented on the expectations—standard deviations plane by the point of the ray:

(0. R;)+5-(\xgAzo, (xgn —Ry))

The important conclusion isthat portfolios of all investors in the
part of shares will have an identical structure given by the vector x, De-
pending on preferences, individual investors will differ only by proportion of
sub-portfolio of bills and sub-portfolio of shares.

However, since all investors will invest in shares maintaining the same
structure and the market is in equilibrium, then this structure has to be iden-
tical to the structure of supply (in terms of values). Denoting by x,, the market
portfolio (the supply structure) we can express the equilibrium assumption in
the form: x,, = x,.

Taking into account the result (**) (obtained when solving the Problem 3),
in equilibrium the following system of equations holds:

@y, AL, -(n =Ry )= (2,0 —Ry)- Az,

which can be re-expressed as:

p=R, ~l+[u<m) —Rf} Tm
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where the simplifying notations for expectation and variance for the market
portfolio are used:

W) = Tmbt
0<2m) =zl Ax,,

The individual equation (let us say, number ¢) out of the above system of
equations can be written as:

Aixm

i ZRf"'[”(m) _Rf} T2

9 (m)

where A; is an i-th row of the matrix A.

However, the row contains covariances of rate of return on investment in
shares of company number ¢ with rates of return of subsequent (from 1 to n)
companies. Hence we obtain:

Az, = ZH;COV(RZ-, R;)-x, ; =COV(R,R, )

Finally we get the result which states that in equilibrium the rate
of return on investment in shares of the company number i accounts to:

(%) P‘i:Rf +[H(m) _Rf} By
where
A.
Bz - ;xm
9 (m)

is simply the regression coefficient in the linear regression model:

R, =R;+(R, ~R;) B+

according to which the total variance of the rate of return a;; (corresponding

element of the matrix A) is decomposed into two parts:

e covariance with the rate of return on market portfolio,

* the lasting component (variance of the individual random deviation «,
uncorrelated with the market portfolio).

Since the first component represents non-diversifiable risk, the rate of return
(desired by investors) reflects it by the “risk premium” of amount (- R) - B3,
Since the second component represents the well diversifiable risk (provided
1 is large), it does not enlarge the expected rate of return.

Expected rates of return imply prices of shares. When for a given company
the observed rate of return is higher than expected then the current price is
lower than equilibrium price (and vice versa). That is why the equation (***)
together with all assumptions needed to derive it is often called the Capital
Assets Pricing Model.
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4. CAPM and the level of rate of return on investment in shares
One should remark, that the equilibrium assumption releases various com-

plications, which have arisen when solving the Problem 3.

¢ Firstly, the market portfolio represents supply, so it cannot contain nega-
tive elements. Thus we can conclude, that in equilibrium (provided other
CAPM assumptions also hold) we will not encounter short sale transac-
tions, even if security market regulations allow for them.

* Secondly, since in equilibrium the optimum structure of sub-portfolio of
shares x, = z,, is unique, then also the condition R; < j.. must hold.
Unfortunately, the model does not explain how large the difference (y,, - Ry

is. In order to ascertain that, let us inspect once again the system of equations

setting the rates of return:

bRy l=(n—Ry) "
g
(m)
and assume also that (given the supply) there exists a vector p© which satis-

fies these equations. Then for an arbitrary real number a the following vector:
p =a 0+ Ry -(1-a)-l

also satisfies the same equations, and if ¢ > 0, then it is in accordance with
CAPM assumptions. However, when replacing the vector p@ by n¥, we change
also the difference

(M(m) —Rf}because ( x;np(l) —Rf} =a ( xﬁnum) —Rf}

The fact illustrated above should not be surprising. The value of difference
(bn) — Rp as compared to the standard deviation o, sets the substitution rate
—shows how large increase of expectation is desired by investors in exchange
of unit increase of risk (as measured by standard deviation). It should be re-
minded that so far we have made no assumption about the substitution rate.
All what we have assumed is that given the expectation investors prefer
smaller variance, and given variance they prefer greater expectation.

Let us assume now that investors maximise expected utility, and that their
utility functions are concave.

Let us consider an investor with utility function u(:) twice differentiable,
with derivatives satisfying the following conditions:

u'(x) >0, u"(x) <0, xe(—oc,0)

having at the starting point savings of amount K > 0. Decision problem he (or
she) faces, is such a choice of the coefficient d, which maximises the function:

o(5) = E{u{ K [1+ R, +5-(c~ R, )|}
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where the random variable ¢, representing the rate of return on investment in
the market portfolio, has expectation equal to y,, (which is greater than Rf),
and variance 02m) )

First deriva(tive of the function is of the form:

0 - 1 o () R )

and at the point § = 0 equals

g’(O):u’{K-[1+ Rf]}-{K-[ ) —Rf]}

what is obviously a positive quantity.
The second-order derivative of g is of the form:

0"() = Eu{K [1+ R, +6~(§—Rf)]}.{K2 ,(g_Rf>zH

and (for arbitrary § > 0) is negative.

Hence it can be concluded, that either there exists such a number &, € (0, o),
for which the expected utility attains its maximum, or such a number does not
exist (for any number § one can point out a number greater than §, which leads
to the higher expected utility).

Perhaps it could be interpreted as follows:
¢ The existence of a marginal number of investors (with marginal capital at

disposal), whose preferences lead to increasing unboundedly the coeffi-

cient § in their portfolios would probably have no influence on the market
because of their limited credibility.

¢ Substantial number of investors (with substantial amounts of capital) wish-
ing to increase § as much as possible (borrowing capital at risk free rate Rf
to invest it in shares) will influence the market, pushing it towards new
equilibrium characterized by lower prices of bills and higher prices of
shares—thus reducing the difference () = Rf).

ok sk

Readers are generally encouraged to try to manipulate model parameters,
to understand how the model will react on exogenous shocks. However, the
reader should be aware that probably not much could be derived out from the
model, unless particular types of utility functions (as von Neumann-Morgen-
stern, exponential etc.) are assumed.
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